Tilting at Windmills

FULL PRESENTATION

Jan Vitek

Suresh Jagannathan

Purdue University

1. Introduction

Harnessing wind energy is one of the pressing challenges of our time.
The scale, complexity, and robustness of wind power systems present
compelling cyber-physical system design issues. In response to these
emerging challenges, Purdue has initiated strategic partnerships
for infrastructure development. Working with the US Department
of Energy, Purdue is developing physical infrastructure for an
experimental wind farm on campus. Separately, General Electric
has committed to building 60 wind turbines with total capacity
exceeding 100 MW on land owned by Purdue. In return, GE
will allow three turbines to be utilized for research and education,
along with access to unrestricted data from all other turbines. This
represents the most comprehensive experimental and operational
wind energy infrastructure available for academic research today.

Figure 1: (a) The wake field of a wind farm decreases performance of
down-wind turbines, and (b) turbine failure caused by a combination of high
winds and control system failure.

Leveraging this physical infrastructure, we aim to develop a
comprehensive computational infrastructure for programming dis-
tributed real-time embedded devices that collaborate to perform
complex, time critical tasks amenable to formal verification. In con-
trast to traditional efforts that focus on programming-in-the-small,
we emphasize declarative specifications, robustness, longevity, and
assurance. We motivate our ideas with two examples. Fig. 1(a) il-
lustrates the wake field of an operational wind farm. While the first
(upwind) set of turbines encounter clean air, downwind turbines are
subject to considerable turbulence, and associated loss in perfor-
mance. Studies have hypothesized that this loss can be as high as
25% [3]. Integrated control of the farm, where each turbine is cog-
nizant of the prevailing wind direction and rotor loading state as well
as the down-wind turbines and their loading states, can significantly
enhance the performance of the entire farm. Even a 1% productivity
increase from a 1000MW farm is enough to power 2,500 homes.
The implications of integrated control on longevity of turbine com-
ponents and cost of energy are even more significant over the 30
year life of the farm. Beyond these, there are more subtle benefits
from an integrated approach to wind-farm control. These include
noise control during quiet hours — directly impacting setbacks (EPA/
local regulations), installation density, and consequently cost.

To address these challenges we have embarked on the construc-
tion of ENSEMBLES, a computational infrastructure for coordinating
complex behavior in heterogeneous distributed real-time embedded
(DRE) systems, and using the infrastructure to develop an automated
wind farm control and sensing software system. A key component
of this infrastructure is a programming model that includes mecha-
nisms for declaration of real-time and macroprogrammed constraints
and performance requirements, mechanisms for distributed coordi-
nation among single-node virtual machines, and support for highly
heterogeneous compute environments encountered in our testbed.
Our distributed services-layer includes a macroprogramming lan-
guage for specification of coordination mechanisms, with support
for control feedback primitives, and computational optimizations,
including load conditioning, network services, and service classes.
A complementary specification language based on temporal logic is
used to verify correctness constraints and to provide a high-degree
of assurance for deployed applications.

2. The ENSEMBLES Cyber Infrastructure

Our design focuses on programmability and assurance for DRE sys-
tems. Technically, our approach rests on two principles: macropro-
gramming and virtualization. Macroprogramming is a programming
methodology that allows users to express global system behavior
through high-level declarative specifications, which are then trans-
lated to consistent node-local behavior. Virtualization provides a
uniform interface to a heterogeneous environment. In our case, we
rely on a high-level language virtual machine coupled with an ab-
stract API for various sensors and actuators on the wind turbine. A
wind turbine data acquisition and analysis system (WT-DAAS) is
built on top of this infrastructure that is used to program health mon-
itoring and optimization algorithms that address the performance
and fault tolerance challenges of wind engineering. There are two
key technologies involved:

e mPL: The macroprogramming layer [1, 2], is based on mPL,
a new macroprogramming language that lets users specify
coordinated behavior, as well as to set optimization targets for
resource usage. With mPL, the behavior of the entire farm, as
well as individual turbines, can be programmed declaratively.
A high-level specification language based on temporal logic is
compiled to lower-level mPL code along with safety and liveness
proofs derived from the logic.

e mOS: Virtualization is achieved by mOS, a runtime system
that is implemented on top of Ovm, our Safety Critical Java
virtual machine [6]. Node-level behavior can thus be coded in
Java which provide software engineering and assurance benefits
over low-level languages such as C. mOS is a customizable
node operating system that can run on native hardware on small
devices, as well as on top of a real-time operating system when
available.

2013/8/5

The notion of an ensemble is introduced by mPL to group inter-
connected computational elements (sensors, actuators, controllers),
some of which can be ensembles themselves. Thus, one can view an
entire farm as an ensemble of turbines, with each individual turbine
in turn as an ensemble of sensors, actuators and compute nodes.
mPL provides the means to define behavior over ensembles and
declaratively control low-level details such as power consumption,
resource management, thread scheduling, and sensing. mPL makes
both distribution and replication-based fault-tolerance transparent.
The mOS layer relies on Java for portability, concurrency, real-time
primitives, and dynamic loading. The last feature is key to support-
ing software updates to a running wind farm. The particular subset
of Java we have adopted for mOS is Safety Critical Java [6], a vari-
ant that is being designed by the PIs for certification. The mOS layer
supports software assurance by enforcing strong isolation between
components and generates trace information for off-line analysis in
case of failures.

Macroprograms specity distributed behavior based on dataflow
abstractions. mPL views computations as networks of functional
components or FCs communicating synchronously through channels.
Macroprograms further specify constraints on the computation. It is
these constraints that guide the deployment of the macroprogram
on the individual nodes. The design of mPL is motivated by the
following design choices:

e Composition and validation: A macroprogram is composed of
reusable components with typed, verifiable interfaces. High level
abstractions are implemented as compositions of FCs. These FCs
make low-level details transparent to the application.

Dataflow: Communication, both local and over the network,
between FCs is transparently supported as a primitive. Dataflow
is mostly synchronous, components are triggered in response to
inputs. Real-time considerations usually require that components
operate at periodic intervals.

Heterogeneity: mPL allows effective utilization of heteroge-
neous nodes in the network, based on their capabilities (e.g., if a
node has a sensor, or has large memory). This provides a unified
programming model that is aware of hardware capabilities.

An mPL macroprogram provides a distributed behavioral specifica-
tion of how an application can be instantiated on physical nodes in
the network. The specification consists of FCs and an interaction
assignment (IA), which is a directed graph that specifies dataflow
through FCs. Each FC has typed data inputs and outputs, and rep-
resents a specific data processing function. At design time, a spec-
ification of each FC is provided; for the macroprogram developer,
it is only this specification that is relevant. Associated with each
FC is a handler that implements the specification. For example, the
following defines a FFT component:

fft : { mcap = MCAP_FAST_CPU, fcid = FCID_FFT,
in[craw_t], out[freq_t] }

This asserts that the FFT handler can only be executed on machines
with fast CPUs, that it must have type FCID FFT, and takes
as input a compressed raw data stream and outputs frequency
domain data. FCs are interconnected via synchronous data channels;
asynchronous communication can be used at the risk of not being
able to validate timing requirements. An output of an FC may be
connected to the input of another FC, in an IA, only if their types
match. Thus, an IA can be statically type-checked. In addition
to dataflow, an IA also specifies data producers and consumers,
which correspond to source and sink device ports, respectively.
Device ports are logical and may not always correspond to hardware
devices.

Our aim is to have mPL programs easily and directly specify
distributed system behavior using simple declarative syntax. Com-
posing applications with reusable components allows the macropro-

grammer to focus on application specification rather than low-level
details or inter-node messaging. Furthermore, high-level abstrac-
tions can be used to refine and tune the semantics of the applications
(some of which the reader might have noticed are omitted in our
example code) and provide rich features such as neighborhood com-
munication and load conditioning.

The mPL compiler reads an mPL program and generates an
annotated directed graph representation. To execute an application,
this graph is communicated over the network nodes running mOS.
FCs are placed in the program memory of the nodes either when
mOS is being flashed, or by downloading them over-the-air. The
node capability constraint determines if a node receives a particular
FC or not. Each node in the network receives a subgraph of the IA,
consisting only of FCs that can be instantiated at the node. Dataflow
with remaining FCs is transparently handled through a network
and routing layer implemented as part of mOS. Local dataflow is
established by the mOS runtime system. mPL supports hierarchical
aggregation of FCs into ensembles, which can be viewed as FCs
themselves and further composed.

3. Conclusions

Our undertaking seeks to apply programming language concepts
and runtime system support for distributed embedded systems, to
improve fault tolerance, reliability, and real-time support in het-
erogeneous environments. These developments are motivated by,
and contribute to problem solving in design and optimization of
large-scale wind-farms. These problems include physical models
underlying coordinated design and optimization, sensing, model re-
duction, and control for real-time performance, safety and longevity,
implementation on large-scale distributed environments, and valida-
tion on experimental and operational testbeds.

Acknowledgements. Support for this work is provided by the
National Science Foundation under grant CNS 1136045.

References

[1] Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogram-
ming heterogeneous sensor networks using cosmos. In EUROSYS,
2007.

Asad Awan, Ahmed H. Sameh, Suresh Jagannathan, and Ananth
Grama. Building verifiable sensing applications through temporal
logic specification. In International Conference on Computational
Science (1), pages 1205-1212, 2007.

R. Barthelmie and L. Jensen. Evaluation of wind farm efficiency and
wind turbine wakes at the nysted offshore wind farm. volume 13, page
573aA$586, 2010.

David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesC Language: A Holistic Approach to Networked
Embedded Systems. In Proc. of PLDI "03, June 2003.

Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler,
and Mani Srivastava. SOS: a dynamic operating system for sensor
networks. In Proc. of MobiSys ’05, June 2005.

Thomas Henties, James Hunt, Doug Locke, Kelvin Nilsen, Martin
Schoeberl, and Jan Vitek. Java for safety-critical applications. In

Certification of Safety-Critical Software Controlled Systems (SafeCert),
March 2009.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors.
In Proc. of ASPLOS-IX, November 2000.

Hongzhou Liu, Tom Roeder, Kevin Walsh, Rimon Barr, and Emin G.
Sirer. Design and implementation of a single system image operating
system for ad hoc networks. In Proc. of MobiSys 05, June 2005.

[2

—

[3

[t

[4

finar

[5

[ty

[6

=

[7

—

[8

[t}

2013/8/5

[9] Ryan Newton and Matt Welsh. Region Streams: functional macro-
programming for sensor networks. In Proc. of DMSN ’04, August
2004.

[10] Ramkumar Rengaswamy, Eddie Kohler, and Mani B Srivastava. Soft-
ware based memory protection in sensor nodes. In Proc. of EmNets’06,
May 2006.

3 2013/8/5

